If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x+64=0
a = 2; b = 32; c = +64;
Δ = b2-4ac
Δ = 322-4·2·64
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{2}}{2*2}=\frac{-32-16\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{2}}{2*2}=\frac{-32+16\sqrt{2}}{4} $
| 77=-7n | | 2x/3+1=23 | | ((x+5)*2-6)/2=8 | | 2x/4=54 | | 100/1x+25/10=-4000/10 | | 100x-25=-400 | | 0.2^x=1.5 | | 4y=10=7y-2 | | 11x+1=12x-6 | | x/6+3x-5=34 | | 12x-6=11x+1 | | x^2=900000 | | 0.15x=20 | | x^2=450000 | | 16-3x=5x-7 | | 16-3x=5x-9 | | 16=3.14r2 | | (x+15)+(2x)+32=180 | | (2x+4)÷4=6/2 | | 11x-30+5x+2=180 | | 3(3x+2)-2x=7x+2 | | 32-3÷2y-5y=22 | | 1a=10 | | 112545/x=369 | | .x+5=3x-1 | | -20−19t=-12t−7t−20 | | -3.2m-7=18.6 | | 6−6r=-6r | | -4+2t=t | | 9+5c=5c+9 | | -9+7q=7q+5 | | -20u−1=-20−10u−11u |